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FIBER OPTIC CIRCUITS Application Note 703: Oct 26, 2000 

HFTA-05.0: Statistical Confidence Levels for
Estimating BER Probability

When testing for bit error ratio (BER), how many bits do you need to transmit through a system in order
achieve reasonable confidence in the results? This article provides the answer. It starts with the theory of
statistical confidence levels and then shows how to apply the theory to the BER measurement problem. It
finishes up with clear examples and step-by-step instructions for setting up the appropriate tests. 

Many components in digital communication systems must meet a minimum specification for the probability
of bit error (P( )). For a given system, P( ) can be estimated by comparing the output bit pattern with a
predefined pattern applied to the input. Any discrepancy between the input and output bit streams is
flagged as an error, and the ratio of detected bit errors ( ) to total bits transmitted (n) is P'( ), where the
prime character signifies an estimate of the actual P( ). The quality of this estimate improves with the total
number of bits transmitted. The relationship can be expressed as 

 [eq. 1] 

It is important to transmit enough bits through the system to ensure that P'( ) is a reasonable approximation
of the actual P( ) (i.e., the value to be obtained if the test could proceed for an infinite amount of time). For
a reasonable limit on test time, therefore, we must know the minimum number of bits that yields a
statistically valid test.

In many cases, we must verify only that P( ) is at least as good as some predefined standard. In other
words, it is sufficient to prove that P( ) is less than some upper limit. For example, the P( ) required in
many telecommunication systems is 10-10 or better (an upper limit of 10-10). The statistical idea of
associating a confidence level with an upper limit can be used to postulate, with quantifiable confidence,
that the actual P( ) is less than the specified limit. As a primary advantage, this method lets you trade test
time for measurement accuracy. 

Defining the statistical confidence level
The statistical confidence level is defined as the probability, based on a set of measurements, that the actual
probability of an event is better than some specified level. (For the purpose of this definition, actual
probability means the probability that is measured in the limit as the number of trials tends toward infinity.)
When applied to P( ) estimation, the definition of statistical confidence level can be restated as the
probability (based on e detected errors out of n bits transmitted) that the actual P( ) is better than a specified
level  (such as 10-10). 

Mathematically, this can be expressed as 

 [eq. 2]

where P[ ] indicates probability and CL is the confidence level. Because confidence level is a probability
by definition, the possible values range from 0% to 100%. 

After computing the confidence level, we can say we have CL percent confidence that the P( ) is better
than . As another interpretation, if we repeat the bit-error test many times and recompute P'( ) = /n for
each test period, we expect P'( ) to be better than  for CL percent of the measurements. 

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/11/ln/en
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Calculating the confidence level
Calculations of the confidence level are based on the binomial distribution function described in many
statistics texts(1,2). The binomial distribution function is generally written as 

[eq. 3] 

Equation [3] gives the probability that k events (i.e., bit errors) occur in n trials (i.e., n bits transmitted),
where p is the probability of event occurrence in a single trial (i.e., a bit error), and q is the probability that
the event does not occur in a single trial (i.e., no bit error). Note that the binomial distribution models
events that have two possible outcomes, such as success/failure, heads/tails, or error/no error. Thus, p+q=1. 

When we are interested in the probability that N or fewer events occur in n trials (or, conversely, that
greater than N events occur), then the cumulative binomial distribution function of Equation 4 is useful: 

[eq. 4] 

Graphical representations of Equations 3 and 4, along with some of their properties, are summarized in
Figure 1. 
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n = Total number of trials (i.e., total bits transmitted)

k = Number of events occurring in n trials (i.e., bit errors)

p = Probability that an event occurs in one trial (i.e.,
probability of bit error)

q = Probability that an event does not occur in one trial
(i.e., probability of no bit error)

p + q = 1
Mean (µ) = nq
Variance ( 2) = npq 

Figure 1. The binomial and cumulative binomial distributions relate number of trials and measured error
to the probabilities that an error will (or will not) occur.
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Binomial distribution function
In a typical confidence-level measurement, we start by choosing a satisfactory level of confidence and
hypothesizing a value for p (the probability of bit error in transmitting a single bit). We represent the
chosen p value as ph. In general, we choose these values according to a limit imposed by specification (e.g.,
if the specification is P( ) < 10-10, we choose ph = 10-10 and a confidence level of, say, 99%).

We can then use Equation 4 to determine the probability P(  > N|ph), based on ph, that more than N bit
errors will occur when n total bits are transmitted. If, during actual testing, less than N bit errors occur
(even though P(  > N|ph) is high), then one of two conclusions can be made: (a) we just got lucky, or (b) the
actual value of p is less than ph. If we repeat the test over and over and continue to measure less than N bit
errors, then we become more and more confident in conclusion (b). 

The quantity P(  > N|ph) defines our level of confidence in conclusion (b). If ph = p, we have a high
probability of detecting more bit errors than N. When we measure less than N errors, we conclude that p is
probably less than ph, and we define as the confidence level this probability that our conclusion is correct.
In other words, we are CL% confident that P( ) (the actual probability of bit error) is less than ph. 
In terms of the cumulative binomial distribution function, the confidence level is defined as 

[eq. 5]
where CL is the confidence level in terms of percent. 

As noted above, when using the confidence-level method we generally choose a hypothetical value of p
(ph) along with a desired confidence level (CL), and then solve Equation 5 to determine how many bits (n)
we must transmit through the system (with N or fewer errors) to prove our hypothesis. Solving for n and N
can prove difficult unless approximations are made. 

If np > 1 (i.e., we transmit at least as many bits as the mathematical inverse of the bit error rate), and k has
the same order of magnitude as np, then the Poisson theorem(1) (Equation 6) provides a conservative
estimate of the binomial distribution function: 

[eq. 6] 

Equation 7 shows how Equation 6 can be used to obtain an approximation for the cumulative binomial
distribution as well: 

[eq. 7] 
We can combine Equations 5 and 7, and solve for n as follows:

(by rearranging Equation 5) 

(using Equation 7)
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[eq. 8]

Note that the second term in Equation 8 equals zero for N = 0, and for that case the equation is easily
solved. Solutions to Equation 8 are more difficult for N > 0, but they can be obtained empirically, using a
computer. We can now determine the total number of bits that must be transmitted through the system to
achieve a desired confidence level. Following is an example of this procedure: 

1) Select ph, the hypothetical value of p. This value is the probability of bit error that we would like to
verify. For example, if we want to show that P( ) < 10-10, then we set p in Equation 8 equal to ph = 10-10.
2) Select the desired confidence level. Here we are forced to trade confidence for test time. To minimize
test time, choose the lowest reasonable confidence level. The trade-off between test time and confidence
level is proportional to -ln(1 - CL). See Figure 2.
3) Solve Equation 8 for n. In most cases, this task is simplified by assuming that no bit errors will occur
during the test (i.e., N = 0). 
4) Calculate the test time. The time required to complete the test is n/R, where R is the data rate. 

Figure 2. Confidence level (in a specified error rate) rises with the allowed test time.

Using CL to estimate P( )
Many telecommunication systems specify 10-10 or better for P( ). Assume that we must test two clock/data-
recovery chips, the MAX3675 (622Mbps) and the MAX3875 (2.5Gbps), to verify compliance with this
specification. We first set ph = 10-10. We would like a test that yields 100% confidence in the desired
specification, but that requires an infinite test time. We therefore settle for a confidence level of 99%. Next
we solve Equation 8 for n using various values of N (0, 1, 2, 3, etc.). The results are shown below in Table
1.
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Table 1. Estimation of Bit Error Probability (Example: CL = 99% and ph = 10-10)
Bit

Errors < N
N= 

Required Number of Bits to
Transmit (n) 

Test Time for Bit Rate of 622Mbps
(seconds) 

Test Time for Bit Rate of
2.5Gbps (seconds) 

0 4.61.1010 74.1 18.5 
1 6.64.1010 106 26.7 
2 8.40.1010 135 33.7 
3 1.00.1011 161 40.2 
4 1.16.1011 186 46.6 

From Table 1 we see that if no bit errors are detected for 18.5s (in a 2.5Gbps system), then we have a 99%
confidence level that P( ) < 10-10. If one bit error occurs in 26.7s of testing, or two bit errors in 33.7s, the
result is the same: a 99% confidence level that P( ) < 10-10. 

To develop a standard P( ) test for the MAX3675/ MAX3875, we might select the test time corresponding
to N = 3 from Table 1. Using a bit-error-rate tester (BERT), we transmit 1011 bits through each of the two
chips. The test time for 1011 bits is 2min 41s at 622Mbps, or 40.2s at 2.5Gbps. At the end of the test time,
we check the number of detected bit errors ( ). If < 3, the device has passed and we are 99% confident that
P( ) < 10-10. 

Stressing the system to reduce test time 
Dan Wolaver has documented a method for reducing test time by stressing the system(3). It is based on an
assumption that the dominant cause of bit errors is thermal (Gaussian) noise at the input of the receiver.
(Note that this assumption excludes jitter and other potential causes of error.) For systems in which this
assumption is valid, the signal-to-noise ratio (SNR) can be reduced by inserting a fixed attenuation in the
transmission path (i.e., the attenuation applies to the signal only; not the dominant noise source). In the
previous example (MAX3675 and MAX3875), it was determined that jitter effects and nonlinear gain in
the input limiting amplifier violated the key assumptions of this method, so it was not employed.
In systems where the assumption is valid, the probability of bit error can generally be calculated(4, 5) as: 

[eq. 9]

where Q(x) is the complementary error (or the "Q" function included in many communications textbooks(6).
A variety of other sources for this data are available, including the NORMDIST function in Microsoft
Excel. Key values for the complementary error function are listed in Table 2. 

Table 2. Tabulated Values for the Complementary Error ("Q") Function

3.71 10-4 
4.26 10-5 
4.75 10-6 
5.19 10-7 
5.61 10-8 
5.99 10-9 
6.36 10-10 
6.70 10-11 
7.03 10-12 



www.maxim-ic.com/an703
Page 7 of 7

Equation 9 shows that the probability of bit error increases as the SNR decreases. If a fixed attenuation ( )
is inserted in the transmission path, then the signal power (PS) is reduced by the factor while the noise
power (PN) is unchanged. The SNR is therefore reduced from SNR = PS/PN to SNR = PS/ PN. The
corresponding P( ) is increased by a factor that can be calculated using Equation 9 and Table 2. 
We can now repeat the earlier test method using a modified value for ph. The calculation can then be
extrapolated to any other SNR by using Equation 9. The result is the same, but the test time may be
significantly shorter. 

The disadvantage of stressing a system is that measurements and calculations must be carried out with
more precision, because extrapolating the results to their non-stressed levels multiplies the errors due to
roundoff truncation, measurement tolerance, etc.
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MORE INFORMATION 
MAX3752: QuickView -- Full (PDF) Data Sheet (304k) -- Free Sample
MAX3875: QuickView -- Full (PDF) Data Sheet (456k) -- Free Sample
MAX3876: QuickView -- Full (PDF) Data Sheet (952k) -- Free Sample
MAX3877: QuickView -- Full (PDF) Data Sheet (560k) -- Free Sample
MAX3878: QuickView -- Full (PDF) Data Sheet (560k) -- Free Sample
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